高速加工技术产生于近代动态多变的全球化市场经济环境。自20世纪80年代,高速加工技术基于金属(非金属)传统切削加工技术、自动控制技术、信息技术和现代管理技术,逐步发展成为综合性系统工程技术。现已广泛实用于生产工艺流程型制造企业,如现代轿车、汽车的生产线等。随着个性化产品的社会需求增加,其生产条件为多品种、单件小批制造加工,高速加工技术必将在生产工艺离散型或混和型企业中,如模具、能源设备、船舶、航天航空等制造企业中得到进一步应用和发展。
高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10倍,主要体现在刀具快进、工进(CMM在线检测)及快退3个环节上。对于整条生产自动线而言,高速加工技术表征是以较简洁的工艺流程,较短、较快的生产节拍在生产线上进行生产加工。这就要突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺方式:采用一工位多工序、一刀多刃(复合刀具),采用复合加工,以车、铰、铣削替代磨削,以拉削、挤、滚压替代车、插、铣削,尽可能地缩短整条生产线的工艺流程。对于某一产品而言,高速加工技术也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及信息反馈。
高速专用数控机床:关键零件的多数加工工艺突破了传统机加工理念,其高速专用数控机床也突破了传统结构设计形式。概括地讲,其机床结构设计是以各种高速多刃专用成形刀具和加工工艺为主导,以满足整条生产线各加工工位、加工工序生产节拍均衡及稳定的质量与精度要求。在一次往复走刀过程中,高速加工发动机、曲轴各种零部件是按构思设计和制造的。对机床数控系统、质量与精度、零部件的材料性能等各项技术参数,是以各加工工位、工序的具体技术要求,分解成各个单一的技术指标,因而机床结构相对简洁、数控系统稳定可靠,其加工技艺数据库固化在数控系统中。
纵观CMT量化生产线机械制造工艺技术,其刀具切削与进给速度未达到某些理论中的高速切削概念指标,但其生产效率是属于高速加工的范畴。在生产实践中,这种相对低速切削更高效的加工技术,通过了市场竞争环境的严格考核。
目前与国外的差距由于种种原因,一些高速加工技术基础共性技术研究没有优化、集成和推广应用。国内企业大都从外国引进高速加工技术,当然也存在一些差距。
零件毛坯制造技术:零件毛坯材料的选择、成形工艺技术的优化,直接影响到后序机制工艺过程、生产节拍快慢和产品质量、成本,是产品全生命周期的起点。国内少有科技人员下功夫去潜心系统研究,国外的快速成形工艺技术还未真正实用于企业生产流程中。更少有人从绿色制造、环保角度研讨零件毛坯制造系统技术的变革与发展。
高速刀具技术:差距主要表现在高性能刀具材料的研发(含表面涂层材料)、刀具制造工艺技术、刀具安全技术及刀具使用技术等领域。
高速机床技术:在市场经济引进技术设备的带动下,我国高速机床技术有了长足进步,差距在于机床关键功能部件的研发上,落后于市场需求。如转速20,000r/min以上的大功率高刚度主轴、无刷环形扭矩电机、直线电机、快速响应数控系统等在实用上处于空白;多功能复合机床设计、制造网络、通讯网络技术的应用,还处于初级阶段。
生产技艺数据库:国内制造企业(尤其是国营企业)普遍未重视建立自身企业(行业)生产技艺系统数据库,其中包含制造工艺流程及相关的技艺(Know How)、金属(非金属)切削数据库、专家机制知识库、企业内外有效资源数据库等。另外,高速切削机理的基础共性技术研究也处于初级阶段。